Problème 1 : matrices d'ordre fini.

Notations et définitions.

Dans tout le problème, n désigne un entier naturel supérieur ou égal à 1.

On désigne par $\mathcal{M}_n(\mathbb{C})$ (respectivement $\mathcal{M}_n(\mathbb{R}), \mathcal{M}_n(\mathbb{Z})$) l'ensemble des matrices carrées à n lignes et n colonnes dont les coefficients appartiennent à \mathbb{C} (respectivement à \mathbb{R} , à \mathbb{Z}).

La matrice identité de taille n est notée I_n .

Soit $A \in \mathcal{M}_n(\mathbb{C})$. L'ensemble des valeurs propres de A est appelé spectre de A et noté Sp(A).

On dit que A est d'ordre fini s'il existe $k \in \mathbb{N}^*$, tel que $A^k = I_n$.

Si A est d'ordre fini, le plus petit entier strictement positif k tel que $A^k = I_n$ est appelé **ordre** de A et noté o(A).

Partie A: préliminaires

- 1. Cette question consiste en des rappels de théorèmes du cours.
 - 1.1. Soit $A \in \mathcal{M}_n(\mathbb{R})$. On suppose qu'il existe $P \in \mathbb{R}[X], P \neq 0$ tel que P(A) = 0.
 - i. Donner une condition suffisante sur P pour que A soit trigonalisable dans $\mathcal{M}_n(\mathbb{R})$.
 - ii. Donner une condition suffisante sur P pour que A soit diagonalisable dans $\mathcal{M}_n(\mathbb{R})$.
 - 1.2. Soit $A \in \mathcal{M}_n(\mathbb{C})$. On suppose qu'il existe $P \in \mathbb{C}[X], P \neq 0$ tel que P(A) = 0. Que deviennent les conditions précédentes lorsque l'on s'intéresse à la trigonalisation ou à la diagonalisation de A dans $\mathcal{M}_n(\mathbb{C})$?
- 2. Soit $B \in \mathcal{M}_n(\mathbb{C})$, d'ordre fini. On pose o(B) = b.
 - 2.1. Démontrer que B est inversible.
 - 2.2. Soit $k \in \mathbb{Z}$. Démontrer que $B^k = I_n$ si et seulement si b divise k.
 - 2.3. Démontrer que les valeurs propres de B sont des racines b-ièmes de l'unité.
 - 2.4. Démontrer que B est diagonalisable dans $M_n(\mathbb{C})$.
- 3. Soit $C \in \mathcal{M}_n(\mathbb{C})$. Ses valeurs propres sont notées $\lambda_1, \ldots, \lambda_n$.

On suppose que C est diagonalisable et que pour tout entier i tel que $1 \le i \le n$, λ_i est une racine n_i -ième de l'unité pour un certain entier n_i .

Pour tout entier i tel que $1 \le i \le n$, on note k_i le plus petit entier strictement positif tel que $\lambda_i^{k_i} = 1$.

- 3.1. Démontrer que C est d'ordre fini et que son ordre divise le PPCM de k_1, \ldots, k_n .
- 3.2. Démontrer que o(C) est le PPCM de k_1, \ldots, k_n .

Partie B: matrices d'ordre fini à coefficients réels

Dans cette partie, on considère une matrice $A \in \mathcal{M}_3(\mathbb{R})$ d'ordre fini. Le but est de démontrer que cette matrice est diagonalisable dans $\mathcal{M}_3(\mathbb{C})$ et de déterminer le spectre de A dans \mathbb{C} .

- 1. Démontrer que si toutes les valeurs propres de A dans \mathbb{C} sont réelles, alors $Sp(A) \subseteq \{-1,1\}$.
- 2. On suppose que 1 est la seule valeur propre de A dans \mathbb{C} .
 - 2.1. Justifier qu'il existe $P \in \mathcal{M}_3(\mathbb{R})$, inversible, et a, b, c éléments de \mathbb{R} tels que :

$$P^{-1}AP = \left(\begin{array}{ccc} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array}\right).$$

- 2.2. On pose $B = P^{-1}AP$. Démontrer que B est d'ordre fini.
- 2.3. Démontrer par récurrence que pour tout $k \in \mathbb{N}$: $B^k = \begin{pmatrix} 1 & ka & \frac{k(k-1)}{2}ac + kb \\ 0 & 1 & kc \\ 0 & 0 & 1 \end{pmatrix}$.

- 2.4. En déduire que $A = I_3$.
- 3. Énoncer sans démonstration un résultat semblable lorsque -1 est la seule valeur propre de A dans \mathbb{C} .
- 4. On suppose que -1 est valeur propre simple de A et que 1 est valeur propre double de A.
 - 4.1. Justifier qu'il existe $Q \in \mathcal{M}_3(\mathbb{R})$, inversible, et a, b, c éléments de \mathbb{R} tels que :

$$Q^{-1}AQ = \left(\begin{array}{ccc} -1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array}\right).$$

4.2. On pose $C = Q^{-1}AQ$.

Démontrer qu'il existe trois suites de nombres réels $(\alpha_k)_{k\in\mathbb{N}}$, $(\beta_k)_{k\in\mathbb{N}}$ et $(\gamma_k)_{k\in\mathbb{N}}$ telles que pour tout entier naturel k:

$$C^{k} = \begin{pmatrix} (-1)^{k} & \alpha_{k} & \beta_{k} \\ 0 & 1 & \gamma_{k} \\ 0 & 0 & 1 \end{pmatrix}.$$

On définira ces suites à l'aide de relations de récurrence.

- 4.3. Donner une expression de γ_k pour tout $k \geq 0$.
- 4.4. En déduire que c = 0.
- 4.5. En déduire que C et A sont diagonalisables dans $\mathcal{M}_3(\mathbb{C})$.
- 5. Énoncer sans démonstration un résultat semblable lorsque -1 est valeur propre double de A et 1 est valeur propre simple de A.
- 6. On suppose que A admet dans $\mathbb C$ au moins une valeur propre non réelle.
 - 6.1. Démontrer qu'il existe $\theta \in 2\pi \mathbb{Q} \setminus \pi \mathbb{Z}$, tel que $Sp(A) = \{e^{i\theta}, e^{-i\theta}, 1\}$ ou $\{e^{i\theta}, e^{-i\theta}, -1\}$. On pourra considérer le polynôme caractéristique de A.
 - 6.2. Démontrer que A est diagonalisable dans $\mathcal{M}_3(\mathbb{C})$.
- 7. Soit $A \in \mathcal{M}_3(\mathbb{R})$. Démontrer que A est d'ordre fini si, et seulement si, A est diagonalisable dans $\mathcal{M}_3(\mathbb{C})$ et qu'il existe $\theta \in 2\pi\mathbb{Q}$ tel que $Sp(A) = \{e^{i\theta}, e^{-i\theta}, 1\}$ ou $\{e^{i\theta}, e^{-i\theta}, -1\}$.

Partie C: matrices d'ordre fini à coefficients entiers

Soit $A \in \mathcal{M}_3(\mathbb{Z})$, d'ordre fini. D'après la partie B, son spectre dans \mathbb{C} est de la forme $Sp(A) = \{e^{i\theta}, e^{-i\theta}, 1\}$ ou $\{e^{i\theta}, e^{-i\theta}, -1\}$, où $\theta \in 2\pi\mathbb{Q}$.

- 1. Démontrer que $2\cos\theta \in \mathbb{Z}$.

 On pourra considérer la trace de A.
- 2. Donner les valeurs possibles pour θ .
- 3. Donner les différents spectres dans \mathbb{C} possibles pour A puis démontrer que $o(A) \in \{1, 2, 3, 4, 6\}$.
- 4. On cherche maintenant à construire des matrices de $\mathcal{M}_3(\mathbb{Z})$ de chaque ordre.
 - 4.1. Donner des matrices de $\mathcal{M}_3(\mathbb{Z})$ d'ordre 1 et 2.
 - 4.2. i. Soit $(a, b, c) \in \mathbb{C}^3$. Calculer le polynôme caractéristique de : $\begin{pmatrix} 0 & 0 & -a \\ 1 & 0 & -b \\ 0 & 1 & -c \end{pmatrix}$.
 - ii. Construire une matrice de $\mathcal{M}_3(\mathbb{Z})$ dont les valeurs propres sont 1, $e^{\frac{2i\pi}{3}}$ et $e^{-\frac{2i\pi}{3}}$. Démontrer que cette matrice est d'ordre 3.
 - iii. Construire des matrices de $\mathcal{M}_3(\mathbb{Z})$ d'ordre 4 et d'ordre 6.

Problème 2 : décimales des nombres rationnels

Notations et définitions

 $\mathbb{N}, \mathbb{Z}, \mathbb{D}$ et \mathbb{Q} désignent respectivement l'ensemble des nombres entiers naturels, celui des nombres entiers relatifs, celui des nombres décimaux et celui des nombres rationnels.

Un nombre réel x est dit décimal s'il existe un entier n tel que $10^n x \in \mathbb{Z}$.

On dit qu'une suite d'entiers naturels $(d_n)_{n\in\mathbb{N}}$ est une suite décimale si, pour tout entier $n\geq 1$, on a $0\leq d_n\leq 9$, le premier terme d_0 étant un entier naturel quelconque.

Une suite décimale est dite *finie* si tous ses termes sont nuls à partir d'un certain rang.

Elle est dite:

- impropre si tous ses termes sont égaux à 9 à partir d'un certain rang;
- propre dans le cas contraire du précédent.

On définit pour tout réel x la partie entière de x, notée E(x), par la condition : E(x) est le plus grand entier inférieur ou égal à x.

Le but de ce problème est de démontrer quelques propriétés des nombres décimaux, puis d'étudier les décimales des nombres rationnels non décimaux.

Partie A: nombres décimaux

- 1. Démontrer que $\mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q}$ et que ces inclusions sont strictes.
- 2. Démontrer que l'ensemble $\mathbb D$ est stable pour l'addition et la multiplication.
- 3. Soit x un nombre rationnel positif. On pose $x = \frac{a}{b}$, avec a et b entiers naturels premiers entre eux et $b \neq 0$.
 - 3.1. On suppose qu'il existe $(\alpha, \beta) \in \mathbb{N}^2$, tels que $b = 2^{\alpha} \times 5^{\beta}$. Démontrer que x est décimal.
 - 3.2. On suppose que x est un décimal non entier. Démontrer que si p est un diviseur premier de b, alors $p \in \{2, 5\}$.
 - 3.3. Déduire des questions précédentes une condition nécessaire et suffisante sur b pour que le rationnel x soit un nombre décimal.
- 4. On considère une suite décimale $(d_n)_{n\in\mathbb{N}}$.
 - 4.1. Démontrer que la série $\sum_{n=0}^{+\infty} \frac{d_n}{10^n}$ est convergente. On note x sa limite.
 - 4.2. Démontrer que dans les deux cas suivants x est un nombre décimal :
 - la suite $(d_n)_{n\in\mathbb{N}}$ est finie;
 - la suite $(d_n)_{n\in\mathbb{N}}$ est impropre.
 - 4.3. Démontrer que pour tout entier $N \ge 0$, on a $\sum_{k=N}^{+\infty} \frac{d_k}{10^k} \le \frac{1+d_N}{10^N}$, avec égalité si et seulement si, pour tout $k \ge N+1, d_k=9$.
 - 4.4. En déduire que si x est un réel vérifiant $x = \sum_{n=0}^{+\infty} \frac{d_n}{10^n}$ et si $(d_n)_{n \in \mathbb{N}}$ est une suite décimale propre, alors la suite $(d_n)_{n \in \mathbb{N}}$ vérifiant cette égalité est unique.
 - Si $x = \sum_{n=0}^{+\infty} \frac{d_n}{10^n}$, avec $(d_n)_{n \in \mathbb{N}}$ suite décimale propre, on note alors $x = d_0, d_1 d_2 ... d_n ...$ et on dit que, pour tout $n \ge 1$, d_n est la n-ième décimale du réel x.
- 5. Démontrer que pour tout nombre décimal positif x, il existe une unique suite décimale finie $(d_n)_{0 \le n \le N}$ telle que $x = \sum_{n=0}^{N} \frac{d_n}{10^n}$.

Parte B: périodicité des décimales d'un rationnel positif non décimal

Soit x un nombre rationnel positif **non décimal**. On pose $x = \frac{a}{b}$, avec a et b entiers naturels premiers entre eux.

On définit par récurrence deux suites d'entiers naturels $(d_n)_{n\in\mathbb{N}}$ et $(r_n)_{n\in\mathbb{N}}$ de la manière suivante :

- $-d_0$ et r_0 sont respectivement le quotient et le reste de la division euclidienne de a par b;
- pour tout $n \ge 0$, d_{n+1} et r_{n+1} sont respectivement le quotient et le reste de la division euclidienne de $10 r_n$ par b.
 - 1. Soit N un entier tel que $N \ge 1$.
 - 1.1. Écrire un algorithme permettant d'afficher les entiers d_n et r_n de n=0 jusqu'au rang N. On suppose disposer d'une instruction calculant la partie entière E(y) d'un réel y.
 - 1.2. Donner pour le rationnel $x = \frac{5}{13}$ les valeurs de d_n et r_n jusqu'au rang N = 7.
 - 2. 2.1. Démontrer par récurrence que pour tout entier $n: x = \sum_{k=0}^{n} \frac{d_k}{10^k} + \frac{r_n}{10^n b}$.
 - 2.2. En déduire que, pour tout entier n, r_n est le reste de la division euclidienne de $10^n a$ par b.
 - 2.3. Démontrer que $x = \sum_{k=0}^{+\infty} \frac{d_k}{10^k}$ et que $(d_n)_{n \in \mathbb{N}}$ est une suite décimale propre.
 - 3. Dans cette question, on va établir que les suites $(d_n)_{n\in\mathbb{N}}$ et $(r_n)_{n\in\mathbb{N}}$ sont périodiques à partir d'un certain rang.
 - 3.1. Démontrer que, pour tout entier naturel $n, r_n \neq 0$.
 - 3.2. Démontrer que les nombres $r_0, r_1, ..., r_{b-1}$ ne peuvent pas être deux à deux distincts.
 - 3.3. Soit q le plus petit indice d'un reste figurant au moins deux fois dans la liste de la question précédente et q' l'indice du premier autre reste qui lui est égal. On pose p = q' q, de sorte que $0 \le q < q + p \le b 1$ et $r_q = r_{q+p}$.

Démontrer que la suite $(r_n)_{n\in\mathbb{N}}$ est périodique de période p à partir du rang q et que la suite $(d_n)_{n\in\mathbb{N}}$ est périodique de période p à partir du rang q+1.

Dans la suite, on dit que q est la pré-période du rationnel x et p sa période. On note alors $x = d_0, d_1, ...d_q [d_{q+1}...d_{q+p}]$ si $q \ge 1$ et $x = d_0, [d_1...d_p]$ si q = 0.

- 4. On conserve dans cette question les notations précédentes.
 - 4.1. i. Démontrer que parmi les nombres $10^0, 10^1, ..., 10^{b-1}$, au moins deux d'entre eux sont congrus modulo b.
 - ii. Démontrer que :
 - q est le plus petit exposant d'un nombre de la liste précédente qui est congru modulo b à un autre nombre de cette liste;
 - -q+p est l'exposant du premier nombre de cette liste congru à 10^q modulo b et distinct de 10^q .
 - 4.2. Démontrer que le rationnel $x = \frac{a}{b}$ a la même période et la même pré-période que $\frac{1}{b}$.

Dans la suite, lorsque la fraction $\frac{1}{b}$ est non décimale, q et p seront nommés « la pré-période et la période de l'entier b ».

5. Déterminer la pré-période et la période des entiers suivants : 7; 12; 112.

Partie C : détermination de la pré-période

On considère un entier b supérieur ou égal à 2 tel que la fraction $\frac{1}{b}$ soit non décimale et on note $\omega(b)$ sa pré-période et $\pi(b)$ sa période.

- 1. Dans cette question, on suppose que b est premier avec 10.
 - 1.1. Démontrer l'équivalence : $10^q \equiv 10^{q+p}$ modulo $b \Leftrightarrow 10^p \equiv 1$ modulo b.
 - 1.2. En déduire que $\omega(b) = 0$.
- 2. Dans cette question, on pose $b=2^j\times 5^k\times c$, où c est un entier premier avec 10. Démontrer que $\pi(b)=\pi(c)$ et que $\omega(b)=\max(j,k)$.

On pourra montrer que :

 $10^q (10^p - 1)$ multiple de $b \Leftrightarrow 10^q$ multiple de $2^j \times 5^k$ et $10^p - 1$ multiple de c.

3. Application : déterminer la période et la pré-période des nombres 150 et 1120.

Partie D : détermination de la période

Dans cette partie, on se propose de déterminer la période des entiers supérieurs ou égaux à 2, qui sont premiers avec 10, en fonction de leur décomposition en facteurs premiers. Si b est un tel entier, d'après la partie C, sa période $\pi(b)$ est le plus petit entier n non nul tel que $10^n \equiv 1$ modulo b.

- 1. Dans cette question, b est un nombre premier distinct de 2 et 5.
 - 1.1. On note \overline{a} la classe d'un entier a dans $\mathbb{Z}/b\mathbb{Z}$ et $(\mathbb{Z}/b\mathbb{Z})^*$ l'ensemble $\mathbb{Z}/b\mathbb{Z}$ privé de $\overline{0}$. Démontrer que l'application $f: \begin{cases} (\mathbb{Z}/b\mathbb{Z})^* \to (\mathbb{Z}/b\mathbb{Z})^* \\ \overline{a} \mapsto \overline{10} \times \overline{a} \end{cases}$ est bien définie et injective.
 - 1.2. En utilisant la question précédente, démontrer que : $10^{b-1} \equiv 1$ modulo b.
 - 1.3. Démontrer que si r est le reste de la division euclidienne d'un entier n par un entier m, alors $10^r 1$ est le reste de la division euclidienne de $10^n 1$ par $10^m 1$.

 On pourra utiliser une forme factorisée de $x^n 1$, où x désigne un réel quelconque.
 - 1.4. Déduire des résultats précédents que :
 - si un entier k vérifie $10^k \equiv 1 \mod b$, alors $\pi(b)$ divise k;
 - $-\pi(b)$ divise b-1.
- 2. Dans cette question, b et c sont deux entiers premiers avec 10 et premiers entre eux.
 - 2.1. Soit n un entier naturel non nul. Démontrer que $10^n \equiv 1$ modulo bc si et seulement si n est un multiple de $\pi(b)$ et de $\pi(c)$.
 - 2.2. En déduire que $\pi(bc) = \operatorname{ppcm}(\pi(b), \pi(c))$.
- 3. Dans cette question, b est un entier de la forme p^n , où p est un nombre premier distinct de 2 et 5, et n un entier naturel non nul. On pose $\pi(p) = \ell$.
 - 3.1. Justifier l'existence de deux entiers q et r tels que $r \ge 1$ et $10^{\ell} 1 = p^r \times q$.
 - 3.2. Premier cas : $n \le r$. Démontrer que $\pi(p^n) = \ell$.
 - 3.3. Deuxième cas : n > r.

 Démontrer par récurrence que, pour tout entier naturel k, il existe un entier naturel Q premier avec p tel que $10^{\ell \times p^k} 1 = p^{r+k} \times Q$ et que $\pi\left(p^{r+k}\right) = \ell \times p^k$.

 En déduire que $\pi(p^n) = \ell \times p^{n-r}$.
- 4. Applications
 - 4.1. Déterminer la période des entiers $3, 3^2, 3^3, 3^4, 7, 7^2$ et 7^3 .
 - 4.2. En déduire la période de l'entier 27783.